Abstract: Quartz crystal microbalance (QCM) sensors coated with molecularly imprinted polymers (MIP) have been developed for the recognition of immunoglobulin M (IgM) and mannose. In this method, methacryloylamidophenylboronic acid (MAPBA) was used as a monomer and mannose was used as a template. For this purpose, initially, QCM electrodes were modified with 2-propene-1-thiol to form mannose-binding regions on the QCM sensor surface. In the second step, the methacryloylamidophenylboronic acid-mannose [MAPBA-mannose], pre-organized monomer system, was prepared using the MAPBA monomer. Then, a molecularly imprinted film was coated on to the QCM electrode surface under UV light using ethylene glycol dimethacrylate (EDMA), and azobisisobutyronitrile (AIBN) as a cross-linking agent and an initiator, respectively. The mannose can be simultaneously bound to MAPBA and fitted into the shape-selective cavities. The binding affinity of the mannose-imprinted sensors was investigated using the Langmuir isotherm. The mannose-imprinted QCM electrodes have shown homogeneous binding sites for mannose (Ka: 3.3 x 10^4 M-1) and heterogeneous binding sites for IgM (Ka1: 1.0 x 10^4 M-1; Ka2: 3.3 x 10^3 M-1)
Template and target information: protein, immunoglobulin M, IgM, mannose