MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Muratsugu S, Tada M
Article Title: Molecularly Imprinted Ru Complex Catalysts Integrated on Oxide Surfaces.
Publication date: 2012
Journal: Accounts of Chemical Research
Volume: 46
Issue: (2)
Page numbers: 300-311.
DOI: 10.1021/ar300142p

Abstract: Selective catalysis is critical for the development of green chemical processes, and natural enzymes that possess specialized three-dimensional reaction pockets with catalytically active sites represent the most sophisticated systems for selective catalysis. A reaction space in an enzyme consists of an active metal center, functional groups for molecular recognition (such as amino acids), and a surrounding protein matrix to prepare the reaction pocket. The artificial design of such an integrated catalytic unit in a non-enzymatic system remains challenging. Molecular imprinting of a supported metal complex provides a promising approach for shape-selective catalysis. In this process, an imprinted cavity with a shape matched to a template molecule is created in a polymer matrix with a catalytically active metal site. In this Account, we review our studies on molecularly imprinted metal complex catalysts, focusing on Ru complexes, on oxide surfaces for shape-selective catalysis. Oxide surface-attached transition metal complex catalysts not only improve thermal stability and catalyst dispersion but also provide unique catalytic performance not observed in homogeneous precursors. We designed molecularly imprinted Ru complexes by using surface-attached Ru complexes with template ligands and inorganic/organic surface matrix overlayers to control the chemical environment around the active metal complex catalysts on oxide surfaces. We prepared the designed, molecularly imprinted Ru complexes on SiO2 surfaces in a step-by-step manner and characterized them with solid-state (SS) NMR, diffuse-reflectance (DR) UV-vis, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller isotherm (BET), X-ray fluorescence (XRF), and Ru K-edge extended X-ray absorption fine structure (EXAFS). The catalytic performances of these Ru complexes suggest that this process of molecular imprinting facilitates the artificial integration of catalytic functions at surfaces. Further advances such as the imprinting of a transition state structure or the addition of multiple binding sites could lead to systems that can achieve 100% selective catalysis
Template and target information: Review - MIP Ru-based catalysts


  Eat, sleep, imprint, repeat shirt  SMI logo mug  Woman of proper-tea mug






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner