Abstract: A dummy molecularly imprinted polymers (DMIP) for phenol was synthesized by a thermal polymerization method with acrylamide as the functional monomer, ethylene dimethacrylate as the crosslinker, 2,2-azobisisobutyronitrile as the free-radical initiator, acetonitrile as the porogenic solvent, and sulfadiazine, a phenol analogue, as the template. In comparison to other adsorbents, the synthesized DMIP showed a higher capacity and rate of adsorption. The adsorption amount of the DMIP adsorbents for phenol reached 6.09 ± 0.15 mg/g, and the adsorption rate of the DMIP was about 0.406 ± 0.01 mg g-1 min-1. The results indicate that the Freundlich model fit the adsorption model of DMIP for phenol. The adsorption model of DMIP for phenol was multilayer adsorption. This showed that the DMIP synthesized by bulk polymerization could be used as a novel adsorbent for the removal of phenol from contaminated water. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Template and target information: dummy template, sulfadiazine, phenol
Author keywords: molecular imprinting, porous materials, separation techniques