Abstract: Improvement of transesterification-catalyzing capability of bio-imprinted tannase is a crucial question of whether to be efficiently utilized in organic media. As for biotransformation of tannic acid to propyl gallate, bio-imprinting technique can dramatically enhance the transesterification-catalyzing capability of tannase. In this work, both cryogenic protection and immobilization were utilized to further improve its apparent catalytic capability in organic media. The results show that Triton-X-100, mannose, and magnesium ion all have a positive effect on cryogenic protection of the tannase. Particularly, combinational application of the three cryoprotectants increases its catalytic performance by 2.7-fold factor. Also, immobilization further elevates its catalytic capability by 2.1 folds. Noteworthily, the coupling application of immobilization and cryo-protection can cause the conversion rate of substrate of the bio-imprinted tannase to increase to a promising 70%. Consequently, it will be helpful to fully utilize tannase in organic phase
Template and target information: bioimprinting, propyl gallate
Author keywords: Cryogenic protection, immobilization, bio-imprinting, Tannase, Propyl gallate, Tannic acid