Abstract: A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0-100 μmol L-1 with a detection limit of 1.6 μmol L-1. Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2-111.8%, showing a promising potential in practical application
Template and target information: 2,4-dichlorophenol, 2,4-DCP
Author keywords: molecularly imprinted polymer, amperometric sensor, Dehalogenative function, Chlorohemin, 2,4-Dichlorophenol, Chloroperoxidase