MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Huynh TP, Pieta P, D'Souza F, Kutner W
Article Title: Molecularly Imprinted Polymer for Recognition of 5-Fluorouracil by RNA-type Nucleobase Pairing.
Publication date: 2013
Journal: Analytical Chemistry
Volume: 85
Issue: (17)
Page numbers: 8304-8312.
DOI: 10.1021/ac401598k

Abstract: A 6-aminopurine (adenine) derivative of bis(2,2'-bithienyl)methane, vis., 4-[2-(6-amino-9H-purin-9-yl)ethoxy]phenyl-4-[bis(2,2'-bithienyl)methane] or Ade-BTM, was designed and synthesized for recognition of 5-fluorouracil (FU), an antitumor chemotherapy agent, by RNA-type (nucleobase pairing)-driven molecular imprinting. The prepolymerization complex stoichiometry involved one FU molecule and two molecules of the Ade-BTM functional monomer. Molecular structure of this complex was thermodynamically optimized via density functional theory at the B3LYP/3-21G* level. The stability constant of the FU-Ade-BTM complex of 1:2 stoichiometry was K = 2.17(-¦0.07) x 107 M-2, as determined by titration with quenching of fluorescence of the bis(2,2'-bithienyl)methane moiety of Ade-BTM by the FU titrant, in benzonitrile, at 352 nm excitation. Next, (5-fluorouracil)-templated molecularly imprinted polymer (MIP-FU) films were deposited on indium-tin oxide (ITO) or Au film-coated glass slides, Pt disk electrodes, or 10-MHz quartz crystal resonators by potentiodynamic electropolymerization from solution of FU, Ade-BTM, and tris([2,2'-bithiophen]-5-yl)methane (TTM) cross-linking monomer at FU:Ade-BTM:TTM = 1:2:3 mol ratio. Then UV-visible and Fourier transform infrared (FT-IR) spectra of the MIP-FU films were recorded to confirm the FU template presence in the MIP-FU film and its subsequent release by extraction with methanol from this film. For determination of the stability constant of the complex of the MIP cavity and FU, piezoelectric microgravimetry (PM) under both batch- and flow-injection analysis conditions was used. For sensing application, three different transduction platforms [differential pulse voltammetry (DPV), capacitive impedimetry (CI), and PM] were integrated with the MIP-FU recognition unit. The limit of detection (LOD) was 56 nM, 75 nM, and 0.26 mM, for these chemosensors, respectively, indicating suitability of the former two for FU determination in blood plasma or serum (~500 nM). Moreover, the CI chemosensor was appreciably more sensitive to FU than to their common interferences
Template and target information: 5-fluorouracil, FU


  Mister Benzene Get Well Soon card  Mug featuring the name Francis spelled out in the single letter amino acid code  Beach bunny periodic table shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner