Abstract: A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop assays similar to the enzyme-linked immunosorbent assay (ELISA) is presented here for the first time. NanoMIPs were synthesized by a solid-phase approach with an immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering, and electron microscopy. Immobilization, blocking, and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a horseradish peroxidase-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range of 0.001 - 70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was 3 orders of magnitude better than a previously described ELISA based on antibodies. In these experiments, nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA
Template and target information: vancomycin