MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   

Searching for author PiletskySA in mipdatabase.com main collection

  1. Abbott B et al., Use of polymeric solid phase in synthesis of MIP nanoparticles for biotin.
    Reactive and Functional Polymers, 170, Article105109-(2022)
  2. García Y et al., A magnetic molecularly imprinted nanoparticle assay (MINA) for detection of pepsin.
    Reactive and Functional Polymers, 170, Article105133-(2022)
  3. Piletsky SS et al., Snapshot imprinting: rapid identification of cancer cell surface proteins and epitopes using molecularly imprinted polymers.
    Nano Today, 41, Article101304-(2021)
  4. Alanazi K et al., Disposable paracetamol sensor based on electroactive molecularly imprinted polymer nanoparticles for plasma monitoring.
    Sensors and Actuators B: Chemical, 329, Article129128-(2021)
  5. Garcia-Cruz A et al., Molecularly imprinted nanoparticles-based assay (MINA) - detection of leukotrienes and insulin.
    Analyst, 145, (12), 4224-4232, (2020)
  6. Garcia Cruz A et al., Design and fabrication of a smart sensor using in silico epitope mapping and electro-responsive imprinted polymer nanoparticles for determination of insulin levels in human plasma.
    Biosensors and Bioelectronics, 169, Article112536-(2020)
  7. Guha A et al., Direct detection of small molecules using a nano-molecular imprinted polymer receptor and a quartz crystal resonator driven at a fixed frequency and amplitude.
    Biosensors and Bioelectronics, 158, Article112176-(2020)
  8. Munawar H et al., Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles.
    Sensors and Actuators B: Chemical, 321, Article128552-(2020)
  9. Cowen T et al., Synthetic Mechanism of Molecular Imprinting at the Solid Phase.
    Macromolecules, 53, (4), 1435-1442, (2020)
  10. Piletska EV et al., Combinatorial screening of polymer nanoparticles for their ability to recognize epitopes of AAV-neutralizing antibodies.
    Journal of Molecular Recognition, 33, (4), Article_e2824-(2020)
  11. Ahmad OS et al., Molecularly Imprinted Polymers in Electrochemical and Optical Sensors.
    Trends In Biotechnology, 37, (3), 294-309, (2019)
  12. Esen C et al., Highly Efficient Abiotic Assay Formats for Methyl Parathion: Molecularly Imprinted Polymer Nanoparticle Assay as an Alternative to Enzyme-Linked Immunosorbent Assay.
    Analytical Chemistry, 91, (1), 958-964, (2019)
  13. Garcia Lopez J et al., Application of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer N-hexanoyl homoserine lactone.
    Chemical Communications, 55, (18), 2664-2667, (2019)
  14. Di Masi S et al., Synthesis and Application of Ion-Imprinted Nanoparticles in Electrochemical Sensors for Copper (II) Determination.
    ChemNanoMat, 5, (6), 754-760, (2019)
  15. Moczko E et al., Epitope approach in molecular imprinting of antibodies.
    Journal of Chromatography B, 1124, 1-6, (2019)
  16. Bedwell TS et al., New protocol for optimisation of polymer composition for imprinting of peptides and proteins.
    RSC Advances, 9, (48), 27849-27855, (2019)
  17. Munawar H et al., Determination of Fumonisin B1 in maize using molecularly imprinted polymer nanoparticles-based assay.
    Food Chemistry, 298, Article125044-(2019)
  18. Garcia Y et al., Competitive pseudo-ELISA based on molecularly imprinted nanoparticles for microcystin-LR detection in water.
    Pure And Applied Chemistry, 91, (10), 1593-1604, (2019)
  19. Yigaimu A et al., Magnetic Molecularly Imprinted Polymer Particles Based Micro-Solid Phase Extraction for the Determination of 4-Nitrophenol in Lake Water.
    Macromolecular Research, 27, (11), 1089-1094, (2019)
  20. Munawar H et al., Molecularly imprinted polymer nanoparticle-based assay (MINA): application for fumonisin B1 determination.
    Analyst, 143, (14), 3481-3488, (2018)
  21. Altintas Z et al., Corrigendum to "NanoMIP based optical sensor for pharmaceuticals monitoring" [Sens. Actuators B: Chem. 213 (2015) 305-313].
    Sensors and Actuators B: Chemical, 277, 679-(2018)
  22. Settipani J et al., Theoretical aspects of peptide imprinting: screening of MIP (virtual) binding sites for their interactions with amino acids, di- and tripeptides.
    Journal of the Chinese Advanced Materials Society, 6, (3), 301-310, (2018)
  23. Piletsky SS et al., A Novel Assay Format as an Alternative to ELISA: MINA Test for Biotin.
    ChemNanoMat, 4, (12), 1214-1222, (2018)
  24. Piletsky SS et al., Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing.
    Chemical Communications, 53, (11), 1793-1796, (2017)
  25. Chen L et al., New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles.
    Applied Surface Science, 406, 115-121, (2017)
  26. Karim K et al., A Protocol for the Computational Design of High Affinity Molecularly Imprinted Polymer Synthetic Receptors.
    Global Journal of Biotechnology and Biomaterial Science, 3, (1), 001-007, (2017)
  27. Piletska E et al., Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.
    Scientific Reports, 7, (1), ArticleNo11537-(2017)
  28. Viveiros R et al., Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach.
    Journal of Cleaner Production, 168, 1025-1031, (2017)
  29. Li SJ et al., Book chapter, Molecularly Imprinted Polymers for Enzyme-like Catalysis: Principle, Design, and Applications, 
    In: Molecularly Imprinted Catalysts: Principles, Syntheses and Applications, Li SJ, Cao SS, Piletsky SA, Turner APF (Eds.) Elsevier: Amsterdam, Ch. 1, 1-17, (2016)
  30. Cáceres C et al., Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes.
    Analyst, 141, (4), 1405-1412, (2016)
  31. Mazzotta E et al., Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications.
    Sensors and Actuators B: Chemical, 229, 174-180, (2016)
  32. Cowen T et al., In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.
    Macromolecular Rapid Communications, 37, (24), 2011-2016, (2016)
  33. Altintas Z et al., NanoMIP based optical sensor for pharmaceuticals monitoring.
    Sensors and Actuators B: Chemical, 213, 305-313, (2015)
  34. Piletska EV et al., Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.
    Analyst, 140, (9), 3113-3120, (2015)
  35. Wren SP et al., Computational Design and Fabrication of Optical Fibre Fluorescent Chemical Probes for the Detection of Cocaine.
    Journal of Lightwave Technology, 33, (12), 2572-2579, (2015)
  36. Karim K et al., Development of MIP sensor for monitoring propofol in clinical procedures.
    Journal of the Chinese Advanced Materials Society, 3, (3), 149-160, (2015)
  37. Mistry J et al., Analysis of cooperative interactions in molecularly imprinted polymer nanoparticles.
    Molecular Imprinting, 3, (1), 55-64, (2015)
  38. Shutov RV et al., Introducing MINA - The Molecularly Imprinted Nanoparticle Assay.
    Small, 10, (6), 1086-1089, (2014)
  39. Wren SP et al., Proceeding, Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor, 
    91574W-4, (2014)
  40. Sergeyeva TA et al., Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples.
    Biopolymers and Cell, 30, (3), 209-215, (2014)
  41. Li SJ et al., Size matters: Challenges in imprinting macromolecules.
    Progress in Polymer Science, 39, (1), 145-163, (2014)
  42. Subrahmanyam S et al., Book chapter, Computational Approaches in the Design of Synthetic Receptors, 
    In: Designing Receptors for the Next Generation of Biosensors, Piletsky SA, Whitcombe MJ (Eds.) Springer: Berlin, Heidelberg, 131-165, (2013)
  43. Krupadam RJ et al., Molecularly Imprinted Polymer Receptors for Nicotine Recognition in Biological systems.
    Molecular Imprinting, 1, (1), 27-34, (2013)
  44. Sergeyeva TA et al., Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.
    Analytica Chimica Acta, 770, 161-168, (2013)
  45. Poma A et al., Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template-"Plastic Antibodies".
    Advanced Functional Materials, 23, (22), 2821-2827, (2013)
  46. Chianella I et al., Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA - Development of a Novel Assay for Vancomycin.
    Analytical Chemistry, 85, (17), 8462-8468, (2013)
  47. Lakshmi D et al., Computational Design and Preparation of MIPs for Atrazine Recognition on a Conjugated Polymer-Coated Microtiter Plate.
    Industrial & Engineering Chemistry Research, 52, (39), 13910-13916, (2013)
  48. Des Azevedo S et al., Molecularly Imprinted Polymer-Hybrid Electrochemical Sensor for the Detection of β-Estradiol.
    Industrial & Engineering Chemistry Research, 52, (39), 13917-13923, (2013)
  49. Yoshimi Y et al., Changes in the Porosity and Permeability of a Molecularly Imprinted Membrane Induced by the Adsorption of a Trace Quantity of Template.
    The Open Analytical Chemistry Journal, 7, 22-29, (2013)
  50. Li SJ et al., A successive-reaction nanoreactor made of active molecularly imprinted polymer containing Ag nanoparticles.
    Journal of Materials Chemistry A, 1, (47), 15102-15109, (2013)
  51. Canfarotta F et al., Polymeric nanoparticles for optical sensing.
    Biotechnology Advances, 31, (8), 1585-1599, (2013)
  52. Perez de Vargas-Sansalvador IM et al., Book chapter, Synthesis of Monodisperse Polymeric Nano- and Microparticles and Their Application in Bioanalysis, 
    In: Advances in Chemical Bioanalysis, Matysik FM (Ed.) Springer: Berlin, Heidelberg, 1-24, (2013)
  53. Muhammad T et al., Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone.
    Analytica Chimica Acta, 709, (1), 98-104, (2012)
  54. Piletska EV et al., Application of a Molecularly Imprinted Polymer for the Extraction of Kukoamine A from Potato Peels.
    Journal of Agricultural and Food Chemistry, 60, (1), 95-99, (2012)
  55. Malitesta C et al., MIP sensors - the electrochemical approach.
    Analytical and Bioanalytical Chemistry, 402, (5), 1827-1846, (2012)
  56. Muhammad T et al., Rational design of molecularly imprinted polymer: the choice of cross-linker.
    Analyst, 137, (11), 2623-2628, (2012)
  57. Ivanova-Mitseva PK et al., Cubic Molecularly Imprinted Polymer Nanoparticles with a Fluorescent Core.
    Angewandte Chemie International Edition, 51, (21), 5196-5199, (2012)
  58. Piletsky SA et al., Book chapter, MIP-based Sensors, 
    In: Molecularly Imprinted Sensors, Li SJ, Ge Y, Piletsky SA, Lunec J (Eds.) Elsevier: Amsterdam, Ch. 14, 339-354, (2012)
  59. Piletsky SA et al., Book chapter, Molecularly Imprinted Polymers, 
    In: Encyclopedia of Biophysics, Roberts GCK (Ed.) Springer: 1596-1599, (2012)
  60. Li SJ et al., 'On/off'-switchable catalysis by a smart enzyme-like imprinted polymer.
    Journal of Catalysis, 278, (2), 173-180, (2011)
  61. Whitcombe MJ et al., The rational development of molecularly imprinted polymer-based sensors for protein detection.
    Chemical Society Reviews, 40, (3), 1547-1571, (2011)
  62. Piletska EV et al., Passive Control of Quorum Sensing: Prevention of Pseudomonas aeruginosa Biofilm Formation by Imprinted Polymers.
    Biomacromolecules, 12, (4), 1067-1071, (2011)
  63. Li SJ et al., A Zipper-Like On/Off-Switchable Molecularly Imprinted Polymer.
    Advanced Functional Materials, 21, (17), 3344-3349, (2011)
  64. Yañez F et al., Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.
    Analytica Chimica Acta, 659, (1-2), 178-185, (2010)
  65. Sergeyeva TA et al., Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection.
    Analytica Chimica Acta, 659, (1-2), 274-279, (2010)
  66. Berti F et al., Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.
    Biosensors and Bioelectronics, 26, (2), 497-503, (2010)
  67. Poma A et al., Advances in the manufacture of MIP nanoparticles.
    Trends In Biotechnology, 28, (12), 629-637, (2010)
  68. Garcinuño RM et al., The stabilisation of receptor structure in low cross-linked MIPs by an immobilised template.
    Soft Matter, 5, (2), 313-317, (2009)
  69. Subrahmanyam S et al., Book chapter, Computational Design of Molecularly Imprinted Polymers, 
    In: Combinatorial Methods for Chemical and Biological Sensors, Potyrailo RA, Mirsky VM (Eds.) Springer: New York, Ch. 6, 135-172, (2009)
  70. Guerreiro AR et al., Selection of imprinted nanoparticles by affinity chromatography.
    Biosensors and Bioelectronics, 24, (8), 2740-2743, (2009)
  71. Lakshmi D et al., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element.
    Analytical Chemistry, 81, (9), 3576-3584, (2009)
  72. Sergeyeva TA et al., A portable sensor system for phenols detection based on molecularly-imprinted polymers with catalytic properties.
    Ukrainskii Biokhimicheskii Zhurnal, 81, (1), 41-51, (2009)
  73. Piletska EV et al., Influence of the Polymerization Conditions on the Performance of Molecularly Imprinted Polymers.
    Macromolecules, 42, (14), 4921-4928, (2009)
  74. Romero-Guerra M et al., Development of a piezoelectric sensor for the detection of methamphetamine.
    Analyst, 134, (8), 1565-1570, (2009)
  75. Piletska EV et al., Design of molecular imprinted polymers compatible with aqueous environment.
    Analytica Chimica Acta, 607, (1), 54-60, (2008)
  76. Mazzotta E et al., Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine.
    Biosensors and Bioelectronics, 23, (7), 1152-1156, (2008)
  77. Guerreiro AR et al., Influence of continuous magnetic field on the separation of ephedrine enantiomers by molecularly imprinted polymers.
    Biosensors and Bioelectronics, 23, (7), 1189-1194, (2008)
  78. Pascale M et al., Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis.
    Analytica Chimica Acta, 609, (2), 131-138, (2008)
  79. Henry OYF et al., Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation.
    Biosensors and Bioelectronics, 23, (12), 1769-1775, (2008)
  80. Sergeyeva TA et al., Sensor system based on molecularly-imprinted polymer membranes for the selective recognition of aflatoxin B1.
    Ukrainskii Biokhimicheskii Zhurnal, 80, (3), 84-93, (2008)
  81. Sergeyeva TA et al., Data on the structure and recognition properties of the template-selective binding sites in semi-IPN-based molecularly imprinted polymer membranes.
    Materials Science and Engineering: C, 28, (8), 1472-1479, (2008)
  82. Bossi A et al., Molecularly imprinted polymers for the recognition of proteins: The state of the art.
    Biosensors and Bioelectronics, 22, (6), 1131-1137, (2007)
  83. Sergeyeva TA et al., Porous molecularly imprinted polymer membranes and polymeric particles.
    Analytica Chimica Acta, 582, (2), 311-319, (2007)
  84. Breton F et al., Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides.
    Biosensors and Bioelectronics, 22, (9-10), 1948-1954, (2007)
  85. Sánchez-Barragán I et al., A molecularly imprinted polymer for carbaryl determination in water.
    Sensors and Actuators B: Chemical, 123, (2), 798-804, (2007)
  86. Turner NW et al., Recognition of Conformational Changes in b-Lactoglobulin by Molecularly Imprinted Thin Films.
    Biomacromolecules, 8, (9), 2781-2787, (2007)
  87. Bossi A et al., Patterned gallium surfaces as molecular mirrors.
    Biosensors and Bioelectronics, 23, (2), 290-294, (2007)
  88. Uludag Y et al., Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.
    FEBS Journal, 274, (21), 5471-5480, (2007)
  89. Sergeyeva TA et al., Aflatoxin-selective molecularly-imprinted polymer membranes based on acrylate-polyurethane semi-interpenetrating polymer networks.
    Ukrainskii Biokhimicheskii Zhurnal, 79, (5), 109-115, (2007)
  90. Chianella I et al., Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: Adsorbent for abacavir.
    Analytica Chimica Acta, 559, (1), 73-78, (2006)
  91. Breton F et al., Integration of photosynthetic biosensor with molecularly imprinted polymer-based solid phase extraction cartridge.
    Analytica Chimica Acta, 569, (1-2), 50-57, (2006)
  92. Sergeyeva TA et al., Capacitive sensor for environmental monitoring based on thin films of molecularly imprinted polymers. Computational modeling for optimization of the polymers-biomimics composition.
    Ukrainskii Biokhimicheskii Zhurnal, 78, (2), 121-130, (2006)
  93. Breton F et al., Book chapter, Mimicking the plastoquinone-binding pocket of Photosystem II using molecularly imprinted polymers, 
    In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices, Giardi MT, Piletska EV (Eds.) Landes Bioscience: Georgetown, Texas, Ch. 14, 155-165, (2006)
  94. Piletsky SA et al., Synthesis of Biologically Active Molecules by Imprinting Polymerisation.
    Biopolymers and Cell, 22, (1), 63-68, (2006)
  95. Piletsky SA et al., Molecularly imprinted polymers in clinical diagnostics - Future potential and existing problems.
    Medical Engineering & Physics, 28, (10), 971-977, (2006)
  96. Yoshimi Y et al., Star shaped molecularly imprinted polymer.
    Polymer Preprints, Japan, 55, (2), 5404-5405, (2006)
  97. Nicholls IA et al., Book chapter, Thermodynamic considerations and the use of molecular modeling as a tool for predicting MIP performance, 
    In: Molecularly Imprinted Materials: Science and Technology, Yan M, Ramström O (Eds.) Marcel Dekker: New York, Ch. 14, 363-393, (2005)
  98. Piletsky SA et al., Polymer cookery: Influence of polymerization time and different initiation conditions on performance of molecularly imprinted polymers.
    Macromolecules, 38, (4), 1410-1414, (2005)
  99. Piletska EV et al., Adaptation of the molecular imprinted polymers towards polar environment.
    Analytica Chimica Acta, 542, (1), 47-51, (2005)
  100. Bastide J et al., The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides.
    Analytica Chimica Acta, 542, (1), 97-103, (2005)
  101. Piletska EV et al., Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers.
    Analytica Chimica Acta, 542, (1), 111-117, (2005)
  102. Henry OYF et al., Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review.
    Analytical and Bioanalytical Chemistry, 382, (4), 947-956, (2005)
  103. Piletska EV et al., Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers.
    Journal of Controlled Release, 108, (1), 132-139, (2005)
  104. Piletsky SA et al., On the role of electrostatic interactions in the enantioselective recognition of phenylalanine in molecularly imprinted polymers incorporating β-cyclodextrin.
    Polymer Journal, 37, (10), 793-796, (2005)
  105. Karim K et al., How to find effective functional monomers for effective molecularly imprinted polymers?
    Advanced Drug Delivery Reviews, 57, (12), 1795-1808, (2005)
  106. Piletsky SA et al., Molecularly imprinted polymers - Tyrosinase mimics.
    Ukrainskii Biokhimicheskii Zhurnal, 77, (6), 63-67, (2005)
  107. Bossi A et al., Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins.
    Journal of Chromatography A, 1023, (2), 297-303, (2004)
  108. Hattori K et al., Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization.
    Journal of Membrane Science, 233, (1-2), 169-173, (2004)
  109. Piletsky SA et al., Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers.
    Macromolecules, 37, (13), 5018-5022, (2004)
  110. Turner NW et al., Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A.
    Biosensors and Bioelectronics, 20, (6), 1060-1067, (2004)
  111. Sergeyeva TA et al., Development of molecularly imprinted polymer membranes with specificity to triazine herbicides, prepared by the "surface photografting" technique.
    Biopolymers and Cell, 20, (4), 307-315, (2004)
  112. Sergeyeva TA et al., In situ formation of porous molecularly imprinted polymer membranes.
    Macromolecules, 36, (19), 7352-7357, (2003)
  113. Chianella I et al., MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR.
    Biosensors and Bioelectronics, 18, (2-3), 119-127, (2003)
  114. Chianella I et al., Rational design of a polymer specific for microcystin-LR using a computational approach.
    Analytical Chemistry, 74, (6), 1288-1293, (2002)
  115. Piletsky SA et al., Book chapter, New materials based on imprinted polymers and their application in optical biosensors, 
    In: Optical bioensors: Present and future, Ligler FS, Rowe Taitt CA (Eds.) Elsevier: Amsterdam, Ch. 13, 397-426, (2002)
  116. Piletsky SA et al., Electrochemical sensors based on molecularly imprinted polymers.
    Electroanalysis, 14, (5), 317-323, (2002)
  117. Piletsky SA et al., Polymer cookery: Influence of polymerization conditions on the performance of molecularly imprinted polymers.
    Macromolecules, 35, (19), 7499-7504, (2002)
  118. Sergeyeva TA et al., Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization.
    Journal of Chromatography A, 907, (1-2), 89-99, (2001)
  119. Subrahmanyam S et al., Bite-and-switch approach using computationally designed molecularly imprinted polymers for sensing of creatinine.
    Biosensors and Bioelectronics, 16, (9-12), 631-637, (2001)
  120. Bossi A et al., Surface-grafted molecularly imprinted polymers for protein recognition.
    Analytical Chemistry, 73, (21), 5281-5286, (2001)
  121. Piletsky SA et al., Application of molecularly imprinted polymers in sensors for the environment and biotechnology.
    Sensor Review, 21, (4), 292-296, (2001)
  122. Tothill IE et al., Book chapter, New biosensors, 
    In: Instrumentation and sensors for the food industry, Kress-Rogers E, Brimelow CJB (Eds.) Woodhead Publishing Ltd.: Cambridge, UK, Ch. 23, (2001)
  123. Matuschewski H et al., Proceeding, Surface engineering: Molecularly imprinted affinity membranes by photograft polymerization, 
    Vo-Dinh T, Buettgenbach S (Eds.), 65-74, (2001)
  124. Piletska EV et al., A new reactive polymer suitable for covalent immobilisation and monitoring of primary amines.
    Polymer, 42, (8), 3603-3608, (2001)
  125. Piletsky SA et al., Molecular imprinting: at the edge of the third millennium.
    Trends In Biotechnology, 19, (1), 9-12, (2001)
  126. Piletsky SA et al., Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach.
    Analyst, 126, (10), 1826-1830, (2001)
  127. Piletsky SA et al., Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays.
    Biosensors and Bioelectronics, 16, (9-12), 701-707, (2001)
  128. Subrahmanyam S et al., Bite-and-switch approach to creatine recognition by use of molecularly imprinted polymers.
    Advanced Materials, 12, (10), 722-724, (2000)
  129. Piletsky SA et al., Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water.
    Macromolecules, 33, (8), 3092-3098, (2000)
  130. Piletsky SA et al., Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for b-agonists determination.
    Analytical Chemistry, 72, (18), 4381-4385, (2000)
  131. Sergeyeva TA et al., Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes.
    Analyst, 124, (3), 331-334, (1999)
  132. Sergeyeva TA et al., Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection.
    Analytica Chimica Acta, 392, (2-3), 105-111, (1999)
  133. Turner APF et al., In vitro diagnostics in diabetes: Meeting the challenge.
    Clinical Chemistry, 45, (9), 1596-1601, (1999)
  134. Mirsky VM et al., A spreader-bar approach to molecular architecture: formation of stable artificial chemoreceptors.
    Angewandte Chemie International Edition, 38, (8), 1108-1110, (1999)
  135. Andersson HS et al., Study of the nature of recognition in molecularly imprinted polymers, II [1] - Influence of monomer-template ratio and sample load on retention and selectivity.
    Journal of Chromatography A, 848, (1-2), 39-49, (1999)
  136. Panasyuk TL et al., Electropolymerized molecularly imprinted polymers as receptor layers in a capacitive chemical sensors.
    Analytical Chemistry, 71, (20), 4609-4613, (1999)
  137. Piletsky SA et al., Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers.
    Macromolecules, 32, (3), 633-636, (1999)
  138. Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
    Journal of Membrane Science, 157, (2), 263-278, (1999)
  139. Piletsky SA et al., Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers.
    Fresenius Journal of Analytical Chemistry, 364, (6), 512-516, (1999)
  140. Piletsky SA et al., Molecularly imprinted self-assembled films with specificity to cholesterol.
    Sensors and Actuators B: Chemical, 60, (2-3), 216-220, (1999)
  141. Svenson J et al., Spectroscopic studies of the molecular imprinting self-assembly process.
    Journal of Molecular Recognition, 11, (1-6), 83-86, (1998)
  142. Piletsky SA et al., Imprinted membranes for sensor technology: Opposite behavior of covalently and noncovalently imprinted membranes.
    Macromolecules, 31, (7), 2137-2140, (1998)
  143. Piletsky SA et al., The rational use of hydrophobic effect-based recognition in molecularly imprinted polymers.
    Journal of Molecular Recognition, 11, (1-6), 94-97, (1998)
  144. Levi R et al., Optical detection of chloramphenicol using molecularly imprinted polymers.
    Analytical Chemistry, 69, (11), 2017-2021, (1997)
  145. Piletsky SA et al., Optical detection system for triazine based on molecularly-imprinted polymers.
    Analytical Letters, 30, (3), 445-455, (1997)
  146. Piletsky SA et al., A biomimetic receptor system for sialic acid based on molecular imprinting.
    Analytical Letters, 29, (2), 157-170, (1996)
  147. Piletsky SA et al., Atrazine sensing by molecularly imprinted membranes.
    Biosensors and Bioelectronics, 10, (9-10), 959-964, (1995)
  148. Piletsky SA et al., Sensors for low-weight organic-molecules based on molecular imprinting technique.
    Sensors and Actuators B: Chemical, 19, (1-3), 629-631, (1994)
  149. Piletsky SA et al., Nucleoside-selective polymers based on methacrylate copolymers.
    Ukrainskii Khimicheskii Zhurnal, 59, (12), 1316-1320, (1993)
  150. Starodub NF et al., Template sensors for low weight organic molecules based on SiO2 surfaces.
    Sensors and Actuators B: Chemical, 14, (1-3), 708-710, (1993)

  151. Similar names

    Pi FW
    Pi JY
    Pi MY
    Piacentini E
    Piacham T
    Pianetti GA
    Piao CY
    Piao JY
    Piao SS
    Picasso G
    Picca RA
    Picci N
    Piccinelli AL
    Pichon V
    Pick A
    Pickens JB
    Pickert D
    Pickup J
    Picó Y
    Pidenko P
    Pidenko PS
    Pidenko SA
    Pidol L
    Piechowska J
    Pieles U
    Pieta P
    Pieterse M
    Pietrzyk A
    Pietrzyk-Le A
    Pigani L
    Pilarczyk M
    Pilato RS
    Pilau EJ
    Pilehvar S
    Piletska E
    Piletska EV
    Piletska OV
    Piletskaya EV
    Piletskaya K
    Piletskii SA
    Piletsky S
    Piletsky SS
    Pilla S
    Pillai SC
    Pillay AE
    Pillay K
    Piloto AM
    Pina-Luis G
    Pina-Luis GE
    Pinacho DG
    Pincus P
    Pineau P
    Pinel C
    Ping H
    Ping JF
    Ping L
    Pingarrón JM
    Pingzhu H
    Pink DL
    Pinkhassik E
    Pinna A
    Pino F
    Pino V
    Pinori E
    Pinta T
    Pinto MM
    Pinto TC
    Pintor J
    Piotto C
    Piovesana S
    Piperno S
    Piramoon M
    Pirard JP
    Pirayesh S
    Pirdadeh-Beiranvand M
    Pires BC
    Pires CTGVMT
    Pires IMR
    Piri F
    Piri S
    Piri-Moghadam H
    Piro B
    Pirouzmand M
    Pirzada M
    Pisani M
    Pisano R
    Pisarev O
    Pisarev OA
    Piscopo L
    Pishro KA
    Pisman Y
    Pissawong T
    Pissetti FL
    Pistorio A
    Piszkiewicz S
    Pitaloka I
    Piticescu RM
    Pitkänen J
    Pittet PA
    Piu L
    Pividori Gurgo MI
    Pividori MI
    Piwonska A
    Piwowarczyk M
    Piyamongkol S
    Pizem H
    Pizio O
    Pizzariello A
    Pizzolato TM


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner